Home
Class 12
MATHS
int(1/(4pi))^(1/(9pi)) sin(1/x)/(x^2)dx=...

` int_(1/(4pi))^(1/(9pi)) sin(1/x)/(x^2)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1//pi)^(2//pi)(sin(1//x))/(x^(2))dx=?

Evaluate the integrals : I = int_(1//pi)^(2//pi) (sin""(1)/(x))/(x^(2)) dx ,

int_((pi)/(2))^(pi)(1-sin x)/(1-cos x)dx

int_(1//pi)^(2//pi)(sin(1//x)+cos(1//x))/(x^(2))dx=

int_((pi)/(4))^((3 pi)/(4))(x)/(1+sin x)dx

1) int_(-(pi)/(2))^(pi)sin^(-1)(sin x)dx 2) int_(-(pi)/(2))^((pi)/(2))(-(pi)/(2))/(sqrt(cos x sin^(2)x))dx 3) int_(0)^(2)2x[x]dx

int_(0)^((pi)/(4))sin^(-1)sqrt((x)/(a+x))dx

int_(0)^((pi)/(4))sin^(-1)sqrt((x)/(a+x))dx

int_(0)^(pi)(x sin x)/(1-sin x)dx=

Find the value of int_(pi/4)^(pi/3) (sin2x)/(1-cos2x) dx