Home
Class 12
MATHS
Lim (n rarr +infty)nsin(2/n)=...

`Lim _(n rarr +infty)nsin(2/n)= `

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(pi n)^(2/n) =

The value of lim_(n rarr infty) (1)/(n) {(n+)(n+2)(n+3)…(n+n)}^(1//n) is equal to

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

If [[cos theta,sin theta],[-sin theta,cos theta]], then lim _(n rarr infty )A^(n)/n is (where theta in R )

lim_(n rarr0)n*sin(1/n)

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

Consider the following statements : I. lim_(n rarr infty) (2^(n)+(-2)^(n))/(2^(n)) does not exist II. lim_(n rarr infty)(3^(n)+(-3)^(n))/(4^(n)) does not exist Then

Evaluate: lim_(n rarr infty)[1/n+1/(n+1)+1/(n+2)+ cdot cdot cdot +1/(3n)] .

Let L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be