Home
Class 12
MATHS
int(4)^(9)sqrt(x)dx=?...

`int_(4)^(9)sqrt(x)dx`=?

Promotional Banner

Similar Questions

Explore conceptually related problems

"F i n d"int_4^9sqrt(x)dx

Let f(x) be a continuous function and I = int_(1)^(9) sqrt(x)f(x) dx , then

Evaluate : int_4^9 1/(sqrt(x))dx

Evaluate : int_4^9 1/(sqrt(x))dx

int_(0)^(9)sqrt(x)/(sqrt(x)+sqrt(9-x))dx=(9)/(2)

int_0^7sqrt(9+x)dx

Prove that : int_(2)^(7) (sqrt(x))/(sqrt(9-x)+sqrt(x))dx=(5)/(2)

The value if definite integral int_(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+sqrt(2x+sqrt(5(4x-5)))] dx is equal to

int_(a//4)^(3a//4)sqrt(x)/(sqrt(a-x)+sqrt(x))\ dx=a/4

Evaluate : (i) int_(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx , (ii) int_(0)^(1)x cos(tan^(1)x)dx