Home
Class 12
MATHS
lim(x rarr a)sin(1/x)...

`lim_(x rarr a)sin(1/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)x sin(1/x)=

Show that lim_(x rarr0)sin((1)/(x)) does not exist

Prove that lim_(x rarr0)(sin^(-1)x)/(x)=1

Evaluate lim_(x rarr0)(sin)(1)/(x) does not exist.

The value of lim_(x rarr a)((sin x)/(sin a))^((1)/(x-a))=

The value of lim_(x rarr a)((sin x)/(sin a))^((1)/(x-a))=

lim_(x rarr0)sin^(-1){x}

lim_(x rarr oo)[(sin((1)/(x)))^(x)+x^(sin((1)/(x)))] is equal to

lim_(x rarr0)x sin((1)/(x))

lim_(x rarr0)x sin((1)/(x^(2)))