Home
Class 12
MATHS
Lt(x rarr 0^+)(x^(sinx))=...

`Lt_(x rarr 0^+)(x^(sinx))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: Lt_(x rarr0)(e^(x)-e^(sin x))/(4(x-sin x))

Lt_(x rarr0)(x-sin x)/(x^(3))

Lt_(x rarr0)[x^(2)+x+sin x]=( where [^(*)] denotes GIF )

lim_(x rarr0)(cotx)^(x)

Lt_(x rarr0)(sin x-x+(x^(3))/(6))/(x^(5))=

Lt_(x rarr0)(cos x+sin x)^((1)/(x))=

lim_(x rarr 0)(e^x-e^sinx)/(2(x-sinx))=

lt_(x rarr0)[(sin|x|)/(x)]= where [^(*)] denotes greater integer function )

Lt_(x rarr0)x+(sin x)/(x+(sin x)/(x+(sin x)/(x+(sin x)/(x+(sin x)/(x+mu x))))=)