Home
Class 11
MATHS
If a,b,c are in G.P.,then a^(2)b^(2)c^(2...

If `a,b,c` are in G.P.,then `a^(2)b^(2)c^(2)((1)/(a^(3))+(1)/(b^(3))+(1)/(c^(3)))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d are in G.P.then prove that (a^(3)+b^(3))^(-1),(b^(3)+c^(3))^(-1),(c^(3)+d^(3))^(-1) are also in G.P.

If a,b,c are in G.P.,prove that: a(b^(2)+c^(2))=c(a^(2)+b^(2))A^(2)b^(2)c^(2)((1)/(a^(3))+(1)/(b^(3))+(1)/(c^(3)))=a^(3)+b^(3)+c^(3)((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))=(a+b+c)/(a-b+c)(1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))(a+2b=2c)(a-2b+2c)=a^(2)+4c^(2)

If a, b, c are in G.P., then prove that (1)/(a^(2)-b^(2))-(1)/(b^(2)-c^(2))=-(1)/(b^(2)) . [Hint : Put b = ar, c = ar^(2) ]

if a,b,c are in H.P., prove that ((1)/(a)+(1)/(b)-(1)/(c))((1)/(b)+(1)/(c)-(1)/(a))=(4)/(ac)-(3)/(b^(2))

If a,b,c,d are in G.P.,prove that (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P.and (1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P

If a,b,c,d are in G.P.prove that: (a^(2)+b^(2)),(b^(2)+c^(2)),(c^(2)+d^(2)) are in G.P.(a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P.(1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P.(a^(2)+b^(2)+c^(2)),(ab+bc+cd),(b^(2)+c^(2)+d^(2))

If a,b,c,d are in G.P.prove that: (i) quad (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P. (i) (1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P.

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + a^(2)) are in G.P.