Home
Class 10
MATHS
Prove that ((1+costheta)/(sintheta))^2=(...

Prove that `((1+costheta)/(sintheta))^2=(1+costheta)/(1-costheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta

Prove that: (i) (costheta)/(1-sintheta)=(1+sintheta)/(costheta) (ii) (1+costheta-sin^(2)theta)/(sintheta+sinthetacostheta)=cottheta (iii) 1+(tan^(2)theta)/(1+sectheta)=sectheta

Prove: (1-costheta)/(sintheta)=(sintheta)/(1+costheta)

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)

Prove that : (1-costheta)/(1+costheta)=(cottheta-cosectheta)^(2)

Prove: ((1+sintheta-costheta)/(1+sintheta+costheta))^2=(1-costheta)/(1+costheta)

(sintheta)/(1+costheta) is equal to (a) (1+costheta)/(sintheta) (b) (1-costheta)/(costheta) (c) (1-costheta)/(sintheta) (d) (1-sintheta)/(costheta)

i) Prove that: (cot^(2)A)/(1-"cosec"A)^(2)=(1+sinA)/(1-sinA) ii) Prove that: (costheta)/(1-tantheta)+(sintheta)/(1-cottheta)=sintheta+costheta

Prove that (1-sintheta+costheta)^2=2(1+costheta)(1-sintheta)