Home
Class 12
MATHS
lim(n rarr oo)(1^(2)+2^(2)+3^(2)+cdots+n...

`lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+cdots+n^(2))/(n^(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(n(1^(3)+2^(3)+3^(3)+cdots n^(3))^(2))/((1^(2)+2^(2)+3^(2)+cdots+n^(2))^(3)) =

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_(n rarr oo)(2^(3n))/(3^(2n))=

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

Evaluate: lim_(n rarr oo) ((1^(2)+2^(2)+3^(2)+...+n^(2)))/((1+3+5+7+...+"n terms")) .

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

lim_ (n rarr oo) (1 ^ (2) + 2 ^ (2) ... + n ^ (2)) / (n ^ (3))