Home
Class 12
MATHS
Prove lim(n->oo)(n+1)/(n)=1...

Prove `lim_(n->oo)(n+1)/(n)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

Prove that lim_(n->oo)(1+1/n)^n=e

lim_(n->oo)2^(n-1)sin(a/2^n)

Evaluate: lim_(n->oo)[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+....+1/(6n^2)]

Evalute lim_(n->oo)[1/((n+1)(n+2))+1/((n+2)(n+4))+......+1/(6n^2)]

If the value of lim_(n->oo){1/(n+1)+1/(n+2)+.......+1/(6n)} is 'K' then find value of (K - log_e 6)? .