Home
Class 12
MATHS
(4) lim(n rarr infty)[n/(n^2+1^2)+n/(n^2...

(4)` lim_(n rarr infty)[n/(n^2+1^2)+n/(n^2+2^2)+n/(n^2+3^2)+.......n/(n^2+n^2)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

If L=lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+(n)/(n^(2)+3^(2))+....+(1)/(5n)) then the value of tan L=

lim_ (n rarr oo) [1+ (2) / (n)] ^ (2n) =

lim_(n rarr oo) [(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+.....+(1)/(n)]

Evaluate: lim_(n rarr oo)((1)/(n^(2)+1)+(2)/(n^(2)+2)+(3)/(n^(2)+3)+...+(n)/(n^(2)+n))

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)