Home
Class 12
MATHS
xy(dy/dx) - y^(2) = (x + y)^(2) e^-(y/x)...

`xy(dy/dx) - y^(2) = (x + y)^(2) e^-(y/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2)(dy)/(dx)+y^(2)=xy

(dy)/(dx)=(y^(2)-x)/(xy+y)

(dy)/(dx)=(x^(2)-y^(2))/(xy)

xy-dy/dx=y^3e^(-x^2)

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these

(dy)/(dx)=(x^(2)+xy)/(x^(2)+y^(2))

(dy)/(dx)=(x^(2)+xy)/(x^(2)+y^(2))

x^(2)(dy)/(dx)=x^(2)+xy+y^(2)

(xy - x^2)dy = y^2 dx

Solve the differential equation _(y-3)(dy)/(dx)=((x+1)^(2)+(y-3)^(2)e^((y-3)/(x-1)))/((xy-3x+y-3)e^(x+1))