Home
Class 11
MATHS
lim(x->o)(e^(2x)-1)/x...

`lim_(x->o)(e^(2x)-1)/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(x->0)(e^(5x) - 1)/(3x)

Evaluate : lim_(x to 0) (e^(x)-1)/x

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Evaluate: lim_(x->0)(e-(1+x)^(1/x))/x

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

Let lim_(x to 0) ("sin" 2X)/(tan ((x)/(2))) = L, and lim_(x to 0) (e^(2x) - 1)/(x) = L_(2) then the value of L_(1)L_(2) is

lim_(x->0)(x(e^x-1))/(1-cosx) is equal to

The value of (lim)_(x->0)(e^(x^2)-e^x+x)/(1-cos2x) is