Home
Class 12
MATHS
lim(x->oo)(1+1/x)^x=e...

`lim_(x->oo)(1+1/x)^x=e`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

lim_(x->oo) (sinx/x) =

lim_(x->oo)(e^(11x)-7x)^(1/(3x))

lim_(x->oo)sin(1/x)/(1/x)

Evaluate: ("lim")_(x-oo)x^(1/x)

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

lim_(x->oo)(1-x+x.e^(1/n))^n

lim_(x->oo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist