Home
Class 11
MATHS
Evaluate u : log u=log(x^(1/4)+y^(1/4...

Evaluate u :

`log u=log(x^(1/4)+y^(1/4))-log(x^(1/5)+y^(1/5))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations for x and y: log_10x+log_10(x)^(1/2)+log_10(x)^(1/4)+….=y (1+3+5+…+(2y-1))/(4+7+10+..+(3y+1))=20/(7log_10x)

Suppose x, y in N and log_(5)(x)+log_(5)(x^(1//2))+log_(5)(x^(1//4))+….=y" (1)" (1+3+5+….+(2y-1))/(4+7+10+…+(3y+1))=(20)/(7 log_(5)(x))" (2)" then log_(10)(y)+log_(5)(x)=

If x , y and z be greater than 1, then the value of |{:(1, log_(x)y, log_(x) z),(log_(y)x , 1 ,log_(y)z),(log_(z)x , log_z y , 1 ):}| =

Suppose x;y;z>0 and are not equal to 1 and log x+log y+log z=0. Find the value of x(1)/(log y)+(1)/(log z)xx y^((1)/(log z)+(1)/(log x))xx(1)/(log x)+(1)/(log y) (base 10)

y=log[3^(x)((x+1)/(x-5))^(3/4)]

log5+log(5x+1)=log(x+5)+1

Simplify: log((1)/(x)+(1)/(y))-log(x+y)+log x+log y

If y=log[(x-1)^(x-1)]-log[(x+1)^(x+1)]," then: "(dy)/(dx)=

y=log[sin^(3)x.cos^(4)x.(x^(2)-1)^(5)]

Solve the following equaions for x and y log_(10)x+(1)/(2)log_(10)x+(1)/(4)log_(10)x+"...."=y " and " (1+3+5+"...."+(2y-1))/(4+7+10+"...."+(3y-1))=(20)/(7log_(10)x) .