Home
Class 11
MATHS
If x,y>0 then prove that ((x^(2)+y^(2))/...

If `x,y>0` then prove that `((x^(2)+y^(2))/(x+y))^(x+y)>=x^(x).y^(y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [(x^(2)+y^(2)+z^(2))/(x+y+z)]^(x+y+z)>x^(x)y^(y)z^(z)>[(x+y+z)/(3)]^(x+y+z)(x,y,z>0)

If y=x^(x), prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

if y=x^(x), then prove (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0

if x^(2)=2y^(2)log y then prove (x^(2)+y^(2))(dy)/(dx)-xy=0

If y = x sin x, prove that x^(2).(d^2y)/(dx^(2))-2x(dy)/(dx)+(x^(2)+y)y=0

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))=

If x is very large as compare to y, then prove that sqrt((x)/(x+y))*sqrt((x)/(x-y))=1+(y^(2))/(2x^(2))

If y=e^acos^((-1)x) , then prove that (1-x^2)y_2-x y_1-a^2y=0 .