Home
Class 12
MATHS
2 If x+y+z=0 then prove that [(1,1,1),(x...

2 If `x+y+z=0` then prove that `[(1,1,1),(x,y,z),(x^(3),y^(3),z^(3))]=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(x+y+z)

Without expanding as far as possible, prove that |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}| = (x-y)(y-z)(z-x)(x+y+z) .

Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

If x + y + z = xyz , prove that (3x -x^(3))/ (1-3x^(2)) + (3y -y^(3))/(1- 3y^(2)) +(3z -z^(3))/(1- 3z^(2)) = (3x -x^(3))/(1-3x)^(2) * (3y- y^(3))/(1-3x)^(2)* (3z- z^(3))/(1-3z)^(2) .

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

If x+y+z=0 and xyz=1, then find the value of (1)/(1-x^(3))+(1)/(1-y^(3))+(1)/(1-z^(3))

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

If x=3, y=2 and z=-1 , then the value of (x^3+y^3+1)/(y^3-z^3) is