Home
Class 12
MATHS
I=int (x+sqrtx)/(sqrtx+1) dx...

`I=int (x+sqrtx)/(sqrtx+1) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int (a^sqrtx)/(sqrtx) dx equals

int (1/sqrtx-sqrtx)dx

If int (sqrtx)^5/((sqrtx)^7+x^6) dx= alog(x^k/(1+x^k))+c then a and k are

int e^(sqrtx) dx

The value of int e^sqrtx/sqrtx(sqrtx + x) dx is equal to

int (1-x) sqrtx dx

If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (where, x gt0 and C is the constant of integration) and f(1)=(-1)/(3) , then the value of f(9) is equal to

Evaluate : int( sqrtx)/sqrt( a^(3) - x^(3) ) dx

y= log(sqrtx+1/sqrtx)

int(1+sqrtx)/(1+x)dx