Home
Class 8
MATHS
Find the value of 5^(2+log5^x)...

Find the value of `5^(2+log5^x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of : log _5 0.2

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

If log2=0.3010andlog3=0.4771 , find the value of log 5

Find the value of : log_(0.2) 5

If log_2 (log_8x)=log_8(log_2x), find the value of (log_2x)^2.

Find the value of 49^((1-log_7(2)))+5^(-log_5(4) is

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

Find the value of sqrt((log_(0.5)4)^(2)) .

Find the value of 81^((1//log_5 3))+(27^(log_9 36)) + 3^((4/(log_7 9))