Home
Class 9
MATHS
(a+b-c)^3+(b+c-a)^3+(c+a-b)^3-3(a+b-c)(b...

`(a+b-c)^3+(b+c-a)^3+(c+a-b)^3-3(a+b-c)(b+c-a)(c+a-b)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression (a-b)^3+\ (b-c)^3+\ (c-a)^3 can be factorized as (a) (a-b)(b-c)(c-a) (b) 3(a-b)(b-c)(c-a) (c) -3\ (a-b)(b-c)(c-a) (d) (a+b+c)(a^2+b^2+c^2-a b-b c-c a)

Factorise : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)

Factorise : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

(a-b)^3 + (b-c)^3 + (c-a)^3=? (a) (a+b+c)(a^2+b^2+c^2-ab-bc-ac) (b) 3(a-b)(b-c)(c-a) (c) (a-b)(b-c)(c-a) (d)none of these

Prove that : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a^3+b^3+c^3-3a b c)

Prove that : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a^3+b^3+c^3-3a b c)

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a(a+b+c)

Prove that (a+b+c)^3 - a^3-b^3-c^3 = 3(a+b)(b+c)(c+a).

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a) .