Home
Class 12
MATHS
tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6)...

`tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) then x^(4)-x^(2)(Sigma ab)+abcd=

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

Statement-1: sin^(-1)tan((tan^(-1))x+tan^(-1)(1-x))] =(pi)/(2) has no non zero integral solution Statement-2: The greatest and least values of (sin^(-1)x)^(3)+(cos^(-1)x)^(3) are (7pi)^(3)/(8) and (pi)^(3)/(32) respectively

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

Solve the following equation for x : tan^(-1)(1/4)+2tan^(-1)(1/5)+tan^(-1)(1/6)+tan^(-1)(1/x)=pi/4

Solve the following equation for x : tan^(-1)(1/4)+2tan^(-1)(1/5)+tan^(-1)(1/6)+tan^(-1)(1/x)=pi/4

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

Solution of tan ^(-1) (1 + x) + tan ^(-1) ( 1- x) = (pi)/(2) is: