Home
Class 12
MATHS
Evaluate : lim( n -> oo ) 1/( n^(2/3...

Evaluate :

`lim_( n -> oo ) 1/( n^(2/3 ) )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

Using Sandwich theorem, evaluate lim_ (n rarr oo) ((1) / (1 + n ^ (2)) + (1) / (2 + n ^ (2)) + ...... + (n) / (n + n ^ (2)))

Evaluate: lim_(n rarr oo)((1)/(n^(2)+1)+(2)/(n^(2)+2)+(3)/(n^(2)+3)+...+(n)/(n^(2)+n))

Evaluate: lim_(n rarr oo)[(1)/((n+1)^(2))+(1)/((n+2)^(2))+...+(1)/((2n)^(2))]

Evaluate: lim_(n rarr oo) ((1^(2)+2^(2)+3^(2)+...+n^(2)))/((1+3+5+7+...+"n terms")) .

Evaluate: lim_(n rarr oo) (n^(2)(1+2+3+4+......+n))/(n^(4)+4n^(2)) .

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(n rarr oo)(1)/(n^(3)){[1^(2)x]+[2^(2)x]+[3^(2)x]+...}[n^(2)x]}