Home
Class 10
MATHS
((x^(2n+3).x^((2n+1)(n+2))))/((x^3)^(2n+...

`((x^(2n+3).x^((2n+1)(n+2))))/((x^3)^(2n+1)(x^((n)(2n+1)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)),n in N, equals ^2nP_(n)(b)^(2n)C_(n)(c)(2n)!(d) none of these

cos^(-1)((1-x^(2n))/(1+x^(2n)))

Prove that int(dx)/((1+x^(2))^(n))=(1)/(2(n-1))[(x)/((1+x^(2))^(n-1))+(2n-3)int(dx)/((1+x^(2))^(n-1))],n in N Hence,computer the value of int cos^(4)xdx

The coefficient of 1/x in the expansion of (1+x)^(n)(1+1/x)^(n) is (n!)/((n-1)!(n+1)!) b.((2n)!)/((n-1)!(n+1)!) c.((2n-1)!(2n+1)!)/((2n-1)!(2n+1)!) d.none of these

Find the sum (x+2)^(n-1)+(x+2)^(n-2)(x+1)^(+)(x+2)^(n-3)(x+1)^(2)++(x+1)^(n)(x+2)^(n-2)-(x+1)^(n) b.(x+2)^(n-2)-(x+1)^(n-1) c.(x+2)^(n)-(x+1)^(n) d.none of these

If I_(n)=int_(0)^(1)(1+x+x^(2)+....+x^(n-1))(1+3x+5x^(2)+....+(2n-3)x^(n-2)+(2n-1)x^(n-1))dx,n in N, then the value of sqrt(I_(9)) is

Divide x^(2n)+a^(2^(n-1))x^(2^(n-1))+a^(2^(n))byx^(2^(n-1))-a^(2^(n-2))x^(2^(n-2))+a^(2^(n-1))

Let S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n , then

Evaluate: int e^(x)(1+nx^(n-1)-x^(2n))/((1-x^(n))sqrt(1-x^(2n)))dx

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2)-2n-5)/((n+1)(n+2))