Home
Class 10
MATHS
(n /(2n+1))^2 + 4(n/(2n+1)) + 4 =0...

`(n /(2n+1))^2 + 4(n/(2n+1)) + 4 =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim {x rarr oo} {(1+ (1) / (n ^ (2))) ^ ((2) / (n ^ (2))) (1+ (4) / (n ^ (2)) ) ^ ((4) / (n ^ (2))) ...... (1+ (n ^ (2)) / (n ^ (2))) ^ (2 (n) / (n ^ (2)))}

Find the sum of n terms of the series (1)/(2*4)+(1)/(4*6)+... (A) (n)/(n+1) (B) (n)/(4(n+1)) (C) (1)/((2n)(2n+2))( D) )(1)/(2^(n)(2^(n)+2))

lim_ (n rarr oo) (1) / (n) [(1) / (n + 1) + (2) / (n + 2) + ... + (3n) / (4n)]

Evalute lim_ (n rarr oo) [(1) / ((n + 1) (n + 2)) + (1) / ((n + 2) (n + 4)) + ...... + ( 1) / (6n ^ (2))]

Find lim_ (n rarr oo) [(n ^ (4) +1) ^ ((1) / (2)) - (n ^ (4) -1) ^ ((1) / (2))] -: n ^ (- 2)

The sum of the series: (1)/(log_(2)4)+(1)/(log_(4)4)+(1)/(log_(8)4)+...+(1)/(log_(2n)4) is (n(n+1))/(2) (b) (n(n+1)(2n+1))/(12) (c) (n(n+1))/(4) (d) none of these

Evaluate : (a^(2n+1) xx a^((2n+1)(2n-1)))/(a^(n(4n-1)) xx (a^2)^(2n+3)

lim_ (n rarr oo) [(1 ^ (3)) / (n ^ (4) + 1 ^ (4)) + (2 ^ (3)) / (n ^ (4) + 2 ^ (4)) ++ (1) / (2n)] =