Home
Class 12
MATHS
Find y : y = lim( n -> 0 ) x^n...

Find y :

y = `lim_( n -> 0 ) x^n`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_( x -> 0 )( ( 1-x ) ^( 1/n ) -1) /x =

Find lim_( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+) equal

Evaluate : lim_( x -> 0 ) ( (e^N - sinx - 1) )/a

find n in N, if lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80

Find lim_ (n rarr oo) [x ^ (n) * (n + 1)] -: [nx ^ (n + 1)]

Find lim_ (n rarr oo) n ^ (n) (1 + n) ^ (- n)

If f(n)=int_(0)^(2015)(e^(x))/(1+x^(n))dx , then find the value of lim_(nto oo)f(n)

Evaluate the following limit : (lim)_(n->oo)(n/(n+y))^n