Home
Class 11
MATHS
(1 + costheta + sintheta)^n + (1 + costh...

(1 + costheta + sintheta)^n + (1 + costheta - sintheta)^n = 2^(n+1)cos^n(theta/2)cos((ntheta)/2)

Promotional Banner

Similar Questions

Explore conceptually related problems

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

If alpha, beta are roots of x^2 sintheta-(costhetasintheta+1)x+xcostheta=0 where alphaltbeta and thetaepsilon(0,pi//4) then value of sum_(n=0)^oo(alpha^n +((-1)^n)/beta^n) (A) (1-costheta)/(sintheta)+(1-sintheta)/(costheta) (B) 1/(1+costheta)+1/(1-sintheta) (C) 1/(1-costheta)+1/(1-sintheta) (D) 1/(1-costheta)-1/(1+sintheta)

Prove that (frac(1+costheta+isintheta)(1+costheta-isintheta))^n=cos ntheta+isin ntheta .

If 0^(@)lethetale90^(@) , then solve the following equations : (i) (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4 (ii) (cos^(2)theta-3costheta+2)/(sin^(2)theta)=1 (iii) (costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2

Show that : Costheta /( 1 - Sintheta ) + Costheta /( 1 + Sintheta ) = 2/Costheta

((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?

(sintheta+sin2theta)/(1+costheta+cos2theta) =

prove that- (sintheta+1-costheta)/(costheta-1+sintheta)=(1+sintheta)/costheta

The value of (sintheta)/(1+costheta)+(sintheta)/(1-costheta) is :

Evaluate : (( 1 + sintheta ) ( 1 - sintheta )) / ( ( costheta ) ( - costheta ) )