Home
Class 12
MATHS
Show that : lim(x rarr 0) (e^(-x)-1)/(...

Show that :

`lim_(x rarr 0) (e^(-x)-1)/(-x)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

Show that : Lim_(x rarr0)(e^(x)-sin x-1)/(x)=0

Show that : lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

lim_(x rarr0)((1-x)^(n)-1)/(x)

lim_(x rarr0)(b^(x)-1)/(a^(x)-1)

Show that lim_(x rarr0)(e^(x)-1)/(sqrt(1+x)-1)=2

lim_(x rarr0)(sqrt(x+1)-1)/(x)

lim_(x rarr0)(sqrt(x+1)-1)/(x)