Home
Class 12
MATHS
int e^sqrtx/sqrtx dx=...

`int e^sqrtx/sqrtx dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int (a^sqrtx)/(sqrtx) dx equals

int (1/sqrtx-sqrtx)dx

The value of int e^sqrtx/sqrtx(sqrtx + x) dx is equal to

The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where, C is the constant of integration)

The integral I=int(e^(sqrtx)cos(e^(sqrtx)))/(sqrtx)dx=f(x)+c (where, c is the constant of integration) and f(ln((pi)/(4)))^(2)=sqrt2. Then, the number of solutions of f(x)=2e (AA x in R-{0}) is equal to

int (1+x)^3/sqrtx dx

int e^(sqrtx) dx

"int5sqrtx dx

If int (sqrtx)^5/((sqrtx)^7+x^6) dx= alog(x^k/(1+x^k))+c then a and k are

Evaluate : int( sqrtx)/sqrt( a^(3) - x^(3) ) dx