Home
Class 12
MATHS
tan^(-1)((1)/(x))+tan^(-1)2=(pi)/(2)...

`tan^(-1)((1)/(x))+tan^(-1)2=(pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) then x^(4)-x^(2)(Sigma ab)+abcd=

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4 , then find the value of x .

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4, then find the value of xdot