Home
Class 12
MATHS
int secx/(secx *tanx)...

`int secx/(secx *tanx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

intsecx/(secx+tanx)dx

Evaluate int secx/log(secx+tanx)dx

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K ) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K

int sec x log(secx+tanx)dx=

intsecxlog(secx+tanx)dx

Evaluate: intsecx\ (secx+tanx)dx

int(secx)/(log(secx+tanx))dx=

If inte^(secx) (secxtanxf(x)+secxtanx+tan^(2)x)dx=e^(secx)f(x)+c. Then f(x) is: (A) secx+xtamx+1/2 (B) xsecx+tanx+1/2 (C) xsecx+x^2tanx+1/2 (D) secx+tanx+1/2

Evaluate int secx/(a+btanx)dx