Home
Class 12
MATHS
If A=[(1,-1,1),(1,-1,1),(1,-1,1)] then A...

If `A=[(1,-1,1),(1,-1,1),(1,-1,1)]` then `A^(5)-A^(4)-A^(3)+A^(2)` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

3(1)/(5)+1(2)/(3) is equal to

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

1/(216)^(-2/3) + 1/(256)^(-3/4) + 1/(243)^(-1/5) is equal to:

{((1)/(3))^(-1)-((1)/(4))^(-1)}^(-1) is equal to.

if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

(1 - (1)/(3)) (1 - (1)/(4)) (1 - (1)/(5)) ….. (1 - (1)/(25)) is equal to