Home
Class 8
MATHS
If a + b + c = 0 ,then (a^(4)+b^(4)+c^...

If ` a + b + c = 0 `,then
`(a^(4)+b^(4)+c^(4))/(a^(2)b^(2)+b^(2)c^(2)+c^(2)a^(2))` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b + c = 0 , prove that a^(4) + b^(4) + c^(4) = 2(b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)) = 1//2 (a^(2) + b^(2) + c^(2))^(2)

If a+b+c=0 then prove the following. a^(4) +b^(4) +c^(4) =2(b^(2)c^(2) +c^(2)a^(2) +a^(2)b^(2)) =(1)/(2) (a^(2)+b^(2)+c^(2))^(2)

If a+b+c=0 prove that (a^4+b^4+c^4)/(a^2b^2+b^2c^2+c^2a^2)=2

If a^(2)+ b^(2) + c^(2)=0 , then what is ((a^(4)-b^(4))^(3)+(b^(4)-c^(4))^(3)+(c^(4)-a^(4))^(3))/((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3)) equal to?