Home
Class 12
MATHS
Find lim(x->oo) ((1+e^x)/(1-e^x))...

Find `lim_(x->oo) ((1+e^x)/(1-e^x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

find lim_(x->0) (e^(x+3)-e^3)/x

Solve lim_(x->oo)(e^x-e^-x)/(e^x-e^-x)

lim_(x->oo)(e^(11x)-7x)^(1/(3x))

lim_(x->e) (lnx-1)/(x-e)

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

lim_(x->oo)(1-x+x.e^(1/n))^n

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

lim_(xto0)((e^(x)-1)/x)^(1//x)

If lim_(x->oo)((1+a^3)+8e^(1/ x))/(1+(1-b^3)e^(1/ x))=2, then there exists

Evaluate the following limit: (lim)_(x->oo)(a^(1//x)-1)x