Home
Class 8
MATHS
[sqrt(4)]^(3)times[sqrt(16)]^(4)-:8^(2)=...

`[sqrt(4)]^(3)times[sqrt(16)]^(4)-:8^(2)=2^?`

Promotional Banner

Similar Questions

Explore conceptually related problems

(sqrt(2)+sqrt(3))times(sqrt(3)+sqrt(8))

(1)/(sqrt(3))times(sqrt(2))/(sqrt(3))=

(4+sqrt(2))/(2+sqrt(2))times(2-sqrt(2))/(2-sqrt(2))

4sqrt(6)xx3sqrt(24) = :-

If (7+4sqrt(3))^(x^(2-8))+(7-4sqrt(3))^(x^(2-8))=14, then x=

Simplify each of the following by removing radical signs and negative indices wherever they occur: (i)\ (sqrt(4))^(-3/4) (ii)\ (sqrt(5))^(-3)\ xx\ (sqrt(2))^(-3) (iii)1/(4^(-5)3)

3sqrt(2^(5))sqrt(4^(9))sqrt(8)=

Find (a+b)^4-(a-b)^4dot Hence evaluate (sqrt(3)+sqrt(2))^4-(sqrt(3)-sqrt(2))^4

Simplify :- (i) (6)/(sqrt(2)) (ii) (sqrt(3))/(3) (iii) sqrt((3)/(4)) (iv) (6)/(sqrt(2)) (v) (sqrt(5))/(10) (vi) sqrt((16)/(2))

The shortest distance between line y"-"x""=""1 and curve x""=""y^2 is : (1) (sqrt(3))/4 (2) (3sqrt(2))/8 (3) 8/(3sqrt(2)) (4) 4/(sqrt(3))