Home
Class 12
MATHS
Find lim(n->oo) (1+1/n)^(n+5)...

Find `lim_(n->oo) (1+1/n)^(n+5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

Prove that lim_(n->oo)(1+1/n)^n=e

lim_(x->oo)(1-x+x.e^(1/n))^n

f'(0) = lim_(n->oo) nf(1/n) and f(0)=0 Using this, find lim_(n->oo)((n+1)(2/pi)cos^(- 1)(1/n)-n)),|cos^(-1)1/n|

lim_(n rarr oo)2^(1/n)

The value of lim_(n->oo) n^(1/n)

lim_(n->oo)2^(n-1)sin(a/2^n)

Evaluate: lim_(n->oo)[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

Find a for which lim_(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+(na+2)+...+(na+n)])=1/60