Home
Class 12
MATHS
Evaluate : lim( n -> 0 ) ( n^3 - 1 )...

Evaluate :

`lim_( n -> 0 ) ( n^3 - 1 )/( n^2 - 1 )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_( n -> ∞ )( 1 + 1/n )^n is equal to

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

evaluate lim_ (n rarr oo) [(1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (2)) + ......... + (1) / (3 ^ (n))]

Using Sandwich theorem, evaluate lim_ (n rarr oo) ((1) / (1 + n ^ (2)) + (1) / (2 + n ^ (2)) + ...... + (n) / (n + n ^ (2)))

Evaluate lim_(nrarroo) [1/(n+1) + 1/(n+2) + 1/(n+3) +…+ 1/(2n)]

Evaluate lim_(nrarroo) [1/(n+1) + 1/(n+2) + 1/(n+3) +…+ 1/(2n)]

Evaluate lim_(nrarroo) [1/n + 1/(n+1) + 1/(n+2) +…+ 1/(3n)]

Evaluate lim_ (n rarr oo) [(1+ (1) / (n)) 91+ (2) / (n)) .... (1+ (n) / (n))] ^ ((1) /(a))