Home
Class 11
MATHS
sin^(2)θ + cos^(4)θ = cos^(2)θ + sin^(4)...

`sin^(2)θ + cos^(4)θ = cos^(2)θ + sin^(4)θ`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2cos^(2)θ + 3sinθ = 3 , where 0^circ lt θ lt 90^circ , then what is the value of sin^(2)2θ + cos^2 (θ) + tan^(2)2θ + cos^(2) 2θ = ? यदि 2cos^(2)θ + 3sinθ = 3 , जहा 0^circ lt θ lt 90^circ तो sin^(2)2θ + cos^(2(θ + tan^(2)2θ + cos^(2)2θ का मान बराबर है :

The value of (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) is : (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) का मान बराबर है :

If cotθ = sqrt6 , then the value of is: (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) यदि cotθ = sqrt6 है तो (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) का मान हैः

If θ lies in the first quadrant and cos^(2) θ – sin^(2) θ = 1/2 , then the value of tan^(2)2θ + sin^(2)3θ is: यदि θ प्रथम चतुथथांश में है और cos^(2) θ – sin^(2) θ = 1/2 , तो tan^(2)2θ + sin^(2)3θ का मान है:

If cos^(2) θ - sin^(2) θ - 3cosθ +2 =0 , 0^circ lt θ lt 90^circ , then what is the value of 4cosecθ + cotθ ? यदि cos^(2) θ - sin^(2) θ - 3cosθ +2 =0 , 0^circ lt θ lt 90^circ , है तो 4cosecθ + cotθ का मान कितना है?

Sec^2θ + cosec^2θ = sec^2θ * cosec^2θ

A line makes angle θ 1 ​ ,θ 2 ​ ,θ 3 ​ ,θ 4 ​ with the diagonals of the cube. Show that cos^ 2 θ 1 ​ +cos^ 2 θ 2 ​ +cos^ 2 θ 3 ​ +cos^ 2 θ 4 ​ = 3/ 4 ​ ?

cos2θ* cos(θ/2) - cos3θ*cos((9θ)/2) = sin5θsin((5θ)/2)

The value of sin (45° + θ) – cos (45° – θ) is (A) 2 cos θ (B) 2 sin θ (C) 1 (D) 0

If {(2 sin θ – cos θ) / (cos θ + sin θ)} = 1, then the value of cot θ is (A) 1/2 (B) 1/3 (C ) 3 (D) 2