Home
Class 11
MATHS
sin(1/2)(n+1)θ-sin(1/2)(n-1)θ = sinθ Fin...

`sin(1/2)(n+1)θ-sin(1/2)(n-1)θ = sinθ`
Find the value of `n`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(2n)sin^(-1)x_(i)=n pi then find the value of sum_(i=1)^(2n)x_(i)

If lim_(n rarr oo)(1)/((sin^(-1)x)^(n)+1)=1, then find the value of x.

In the equation int (dx)/sqrt(2ax - x^(2) ) = a^(2) sin ^(-1) [(x)/(a) - 1] . Find the value of n .

If ^(2n+1)P_(n-1):^(2n-1)P_(n)=3:5, then find the value of n.

If the product (sin1^(@))(sin3^(@))(sin5^(@))(sin7^(@))......*(sin89^(@))=(1)/(2^(n)) ,then find the value of n.

If the product (sin1^(@))(sin3^(@))(sin5^(@))(sin7^(@))...(sin89^(@))=((1)/(2^(n))) then find the value of n

sin((n+1)/(2))theta-sin((n-1)/(2))theta=sin theta

If θ lies in the first quadrant and cos^(2) θ – sin^(2) θ = 1/2 , then the value of tan^(2)2θ + sin^(2)3θ is: यदि θ प्रथम चतुथथांश में है और cos^(2) θ – sin^(2) θ = 1/2 , तो tan^(2)2θ + sin^(2)3θ का मान है:

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to

sin^(2)n theta-sin^(2)(n-1)theta=sin^(2)theta where n is constant and n!=0,1