Home
Class 12
MATHS
If e^y(x+1)=1, then prove that (d^2)(y)/...

If `e^y(x+1)=1`, then prove that `(d^2)(y)/(dx^2)=(dy/dx)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2) If y=sin(2sin^(-1)x), show that ((1-x^(2))d^(2y))/(dx^(2))=x(dy)/(dx)-4y

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=e^(ax) sin be then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y=x^(x), prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0