Home
Class 12
MATHS
(d^(2)y)/(dx^(2))+2(dy)/(dx)+y=e^(x)...

`(d^(2)y)/(dx^(2))+2(dy)/(dx)+y=e^(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d^(2)y)/(dx^(2))+(dy)/(dx)+y=(1-e^(x))^(2)

If f(x) and g(x) are two solutions of the differential equation (a(d^(2)y)/(dx^(2))+x^(2)(dy)/(dx)+y=e^(x),thenf(x)-g(x)^(@) is the solution of

If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(ax)sinbx," then "(d^(2)y)/(dx^(2))-2a(dy)/(dx)=

If e^(y)(x+1)=1 ,show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If e^(y)(x+1)=1, show that (d^(2)y)/(dx^(2))=((dy)/(dx))^(2)

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0