Home
Class 11
MATHS
lim(x->0) frac{xe^x-log(1+x)}{x^2}=...

`lim_(x->0) frac{xe^x-log(1+x)}{x^2}=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) frac{sqrt(1+ x} -1}{x}

Usinfg L' Hospital's rule, evaluate : lim_(xrarr0)(xe^(x)-"log"(1+x))/x^(2)

lim_(x->1) (1-x^2) ^ frac{1}{log(1-x)}

Evaluate the limits using the expansion formula of functions lim_(x->0) (sinx+log(1-x))/x^2

lim_(xrarr0)[1/x - log(1-x)/x^2] =

lim_(xrarr0)[1/x - log(1-x)/x^2] =

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

lim_(xrarr0) (xcos x-log(1+x))/(x^2) equals

lim_(x rarr oo)(log(1+x))/(x)