Home
Class 12
MATHS
cos^(4)θ + cos^(2)θ sin^(2)θ . cos^(...

`cos^(4)θ + cos^(2)θ sin^(2)θ . cos^(2)θ`
find the derivative with respect to `theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Sec^2θ + cosec^2θ = sec^2θ * cosec^2θ

The value of (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) is : (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) का मान बराबर है :

Solve, integrate ∫ (dθ)/(sin^2θ * cos^2θ)

(sinθ - 2sin^3θ)/(2cos^3θ - cosθ) = tanθ

If cos^(2) θ - sin^(2) θ - 3cosθ +2 =0 , 0^circ lt θ lt 90^circ , then what is the value of 4cosecθ + cotθ ? यदि cos^(2) θ - sin^(2) θ - 3cosθ +2 =0 , 0^circ lt θ lt 90^circ , है तो 4cosecθ + cotθ का मान कितना है?

If 2cos^(2)θ + 3sinθ = 3 , where 0^circ lt θ lt 90^circ , then what is the value of sin^(2)2θ + cos^2 (θ) + tan^(2)2θ + cos^(2) 2θ = ? यदि 2cos^(2)θ + 3sinθ = 3 , जहा 0^circ lt θ lt 90^circ तो sin^(2)2θ + cos^(2(θ + tan^(2)2θ + cos^(2)2θ का मान बराबर है :

If cotθ = sqrt6 , then the value of is: (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) यदि cotθ = sqrt6 है तो (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) का मान हैः

If θ lies in the first quadrant and cos^(2) θ – sin^(2) θ = 1/2 , then the value of tan^(2)2θ + sin^(2)3θ is: यदि θ प्रथम चतुथथांश में है और cos^(2) θ – sin^(2) θ = 1/2 , तो tan^(2)2θ + sin^(2)3θ का मान है:

If 2cos^(2) θ - 5cosθ +2 =0 , 0^circ lt θ lt 90^circ , then the value of (cosecθ + cotθ) is:

cos2θ* cos(θ/2) - cos3θ*cos((9θ)/2) = sin5θsin((5θ)/2)