Home
Class 11
MATHS
Prove that r^(2) = x^(2)+y^(2)+z^(2) ...

Prove that `r^(2) = x^(2)+y^(2)+z^(2)`
If `x=r sinA.cosA` , `y=rsinA.sinA` and
`z=rcosA`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (sinA - 2sin^(3)A)/(2 cos^(3)A - cosA) = tan A

Prove that: 1-(sin^(2)A)/(1+cotA)-(cos^(2)A)/(1+tanA)=sinA.cosA

Prove that : (sinA+cosA)^(2)+(sinA-cosA)^(2)=2

Prove that (1+cosA)/(sinA) + (sinA)/(1+cosA) = 2/(sin A)

Prove that (CosA)/(1-tanA)-(Sin^(2)A)/(CosA-SinA)=SinA+CosA

If x=r cos A cos B, y=rcosAsinB, z=rsin A then x^(2)+y^(2)+z^(2)=

Prove that: 3(sinA-cosA)^(4)+6(sinA+cosA)^(2)+4(sin^(6)A+cos^(6)A)=13

If x = 4cosA + 5sinA and y = 4 sinA - 5 cosA, then the value of x^2+y^2 is : यदि x = 4cosA + 5sinA तथा y = 4 sinA - 5 cosA है, तो x^2+y^2 का मान क्या होगा ?

If x=r sin A cos C,quad y=r sin A sin C and z=r cos A, prove that r^(2)=x^(2)+y^(2)+z^(2)

If x , y, z in R, x + y + z= 4 and x^(2) + y^(2) + z^(2) = 6 , then the maximum possible value of z is