Home
Class 11
MATHS
If sin(A+iB)=x+iy, then what is the valu...

If `sin(A+iB)=x+iy,` then what is the value of `x^(2)sech^(2)B+y^(2)cosech^(2)B?`
a. 0
b. 1
c. -1
d. 2

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a sin theta and y=b cos theta, what is the value of b^(2)x^(2)+a^(2)y^(2)?

If x+iy=sqrt((a+ib)/(c+id)), then write the value of (x^(2)+y^(2))^(2)

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

If sin A+sin^(2)A=1, then the value of cos^(2)A+cos^(4)A is 2(b)1(c)-2(d)0

If a + ib = sqrt((u + iv)/(x + iy)) then the value of a^2 + b^2 is:

If the operation ^^ is defined by the equation x^^y=2x+y , what is the value of a in 2^^a=a^^3? (a) 0 (b) -1 (c) 1 (d) 4

If sqrt(a+ib)=x+iy, then possible value of sqrt(a-ib) is x^(2)+y^(2) b.sqrt(x^(2)+y^(2)) c.x+iydx-iy e.sqrt(x^(2)-y^(2))

If a+b+c=0, then the value of (x^(a))^(a^(2)-bc)*(x^(b))^(b^(2)-ca)*(x^(c))^(c^(2)-ab) is equal to a 0 b.1 c.-1 d.-2