Home
Class 11
MATHS
If n is an integer then prove (1+cosθ+is...

If `n` is an integer then prove
`(1+cosθ+isinθ)^(n) + (1+cosθ-isinθ)^(n) = 2^(n+1)cos^(n)(θ/2)cos((nθ)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

" *.i).i) If "n" is an integer then show that "(1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

If n is an integer then show that (1+i)^(2n)+(1-i)^(2n)=2^(n+1)cos(n pi)/(2)

If ‘n’ be any integer ,then n(n+1)( 2n+1) is :

If n is an integer,prove that cos(n pi+theta)=(-1)^(n)cos theta

If n be a positive integer, then prove that (1+i)^n+(1-i)^n=2^(n/2+1)."cos"((npi)/4)

If n be integer gt1, then prove that sum_(r=1)^(n-1) cos (2rpi)/n=-1

If n is a positive integer,prove the following (1+cos theta+i sin theta)+(1+cos theta-i sin theta)^(n)=2^(n+1)cos^(n)((theta)/(2))cos((n theta)/(2))

If n is be a positive integer,then (1+i)^(n)+(1-i)^(n)=2^(k)cos((n pi)/(4)), where k is equal to

If a>b and n is a positive integer,then prove that a^(n)-b^(n)>n(ab)^((n-1)/2)(a-b)