Home
Class 12
MATHS
intsin^(2)x/(sin^(2)x + cos^(2)x)...

`intsin^(2)x/(sin^(2)x + cos^(2)x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find:int(sin^(2)x-cos^(2)x)/(sin^(2)x cos^(2)x)dx

intsin^(2)x.cos^(2)xdx=

Integrate the following: int{(5cos^(3)x+2sin^(3)x)/(2sin^(2)x*cos^(2)x)+sqrt(1+sin2x)+(1+2sin x)/(cos^(2)x)+(1-cos2x)/(1+cos2x)}dx

(i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to

I=int(sin^(2)x-cos^(2)x)/(sin^(2)x*cos^(2)x)dx

"int(sin^(2)x+cos^(2)x)/(sin^(2)x*cos^(2)x)dx

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]

If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

int(sin^(2)x cos^(2)x)/((sin^(5)x+cos^(3)x sin^(2)x+sin^(3)x cos^(2)x+cos^(5)x)^(2))backslash dx