Home
Class 11
MATHS
If x+y+z=0 ; then prove that: ((1)/(1+de...

If `x+y+z=0` ; then prove that: `((1)/(1+del^(x)+del^(-y)))+((1)/(1+del^(y)+del^(-z)))+((1)/(1+del^(z)+del^(-x)))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = r cos theta and y = r sin theta, prove that (del ^ (2) r) / (del x ^ (2)) + (del ^ (2) r) / (del y ^ (2)) = (1) / (r) [((del r) / (del x)) ^ (2) + ((del r) / (del y)) ^ (2)]

If x,y,z gt 0 then prove that (x+y+z)(1/x+1/y+1/z) geq 9

If y=f(x+ct)+g(x-ct), then show that (del^(2)y)/(del t^(2))=c^(2)(del^(2)y)/(del x^(2))

If u = (x^2+y^2+z^2)^(-1/2) then prove that (del^2u)/(delx^2)+(del^2u)/(dely^2)+(del^2u)/(delz^2) =0

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If xy+yz+xz=1, then prove that (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))=(4xyz)/((1-x^(2))(1-y^(2))(1-z^(2)))

(1) / (1 + x + y ^ (- 1)) + (1) / (1 + y + z ^ (- 1)) + (1) / (1 + z + x ^ (- 1))

If u=log(x^(2)+y^(2)+z^(2)) prove that (del^(2)u)/(del x^(2))+(del^(2)u)/(del y^(2))+(del^(2)u)/(del z^(2) = 2/(x^(2)+y^(2)+z^(2)

If x = r cos theta, y = r sin theta then prove that (del (x, y)) / (del (r, theta)) xx (del (r, theta)) / (del (x, y)) = 1

If x,y,z are all different real numbers,then prove that (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-z)+(1)/(y-z)+(1)/(z-x))^(2)