Home
Class 11
MATHS
9.If f(x)=(1+x)/(1-x),then prove that : ...

9.If `f(x)=(1+x)/(1-x)`,then prove that : `(f(x)*f(x^(2)))/(1+[f(x)]^(2))=(1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^(2))]=2f(x)

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

If f(x)=(1+x)/(1-x) then f(x)*(f(x^(2)))/(1+(f(x))^(2))

If f(x)=log((1+x)/(1-x)) show that f((2x)/(1+x^(2)))=2(f(x))

If f(x)=(x^(2)-1)/(x^(2)+1) prove that f((1)/(x))=-f(x)

If f is a real function defined by f(x)=(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3)

If f(x) = 2/(2-x) then show that f(f(f(x))) = (2(x-1))/x

If f(x)=(x^(2))/(1+x^(2)), prove that lim_(x rarr oo)f(x)=1