Home
Class 14
MATHS
If (x+1/x)=3 , find the value of (x^3-1/...

If `(x+1/x)=3` , find the value of `(x^3-1/x^3)(x^4 + 1/x^4)`

A

846

B

`235sqrt5`

C

`376sqrt5`

D

`329sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((x^3 - \frac{1}{x^3})(x^4 + \frac{1}{x^4})\) given that \(x + \frac{1}{x} = 3\), we can follow these steps: ### Step 1: Find \(x^2 + \frac{1}{x^2}\) We start with the equation: \[ x + \frac{1}{x} = 3 \] Now, we square both sides: \[ \left(x + \frac{1}{x}\right)^2 = 3^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = 9 \] Subtracting 2 from both sides gives: \[ x^2 + \frac{1}{x^2} = 7 \] ### Step 2: Find \(x^3 - \frac{1}{x^3}\) We can use the identity: \[ x^3 - \frac{1}{x^3} = \left(x + \frac{1}{x}\right)\left(x^2 - 1 + \frac{1}{x^2}\right) \] We already know \(x + \frac{1}{x} = 3\) and we can find \(x^2 - 1 + \frac{1}{x^2}\) as follows: \[ x^2 - 1 + \frac{1}{x^2} = (x^2 + \frac{1}{x^2}) - 1 = 7 - 1 = 6 \] Now substituting back: \[ x^3 - \frac{1}{x^3} = 3 \cdot 6 = 18 \] ### Step 3: Find \(x^4 + \frac{1}{x^4}\) We can use the identity: \[ x^4 + \frac{1}{x^4} = \left(x^2 + \frac{1}{x^2}\right)^2 - 2 \] Substituting \(x^2 + \frac{1}{x^2} = 7\): \[ x^4 + \frac{1}{x^4} = 7^2 - 2 = 49 - 2 = 47 \] ### Step 4: Calculate \((x^3 - \frac{1}{x^3})(x^4 + \frac{1}{x^4})\) Now we can find the final result: \[ (x^3 - \frac{1}{x^3})(x^4 + \frac{1}{x^4}) = 18 \cdot 47 \] Calculating this gives: \[ 18 \cdot 47 = 846 \] ### Final Answer Thus, the value of \((x^3 - \frac{1}{x^3})(x^4 + \frac{1}{x^4})\) is: \[ \boxed{846} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+1/x=3 find the value of x^4+1/x^4

If (x^4+1/x^4)=119 then the value of (x^3-1/x^3) is:

4^(x-1)=3^(x) then find the value of x

If x-(1)/(x)=3, find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

If 3x - (1)/(2x) = 3 , then find the value of (36x^(4) + 1)/(4x^(2)) .

If x - 1/x = 3 , find the value of : ( a ) x^2 + 1/x^2 ( b ) x^4 + 1/x^4

If x^(4)+(1)/(x^(4))=47, find the value of x^(3)+1/x^(3)