Home
Class 14
MATHS
If p+q+r=11, pq+qr+rp=8 and pqr=11/3 the...

If p+q+r=11, `pq+qr+rp=8` and pqr=`11/3` then find `p^3+q^3+ r^3` = ?

A

1056

B

1078

C

1038

D

976

Text Solution

AI Generated Solution

The correct Answer is:
To find \( p^3 + q^3 + r^3 \) given the equations: 1. \( p + q + r = 11 \) 2. \( pq + qr + rp = 8 \) 3. \( pqr = \frac{11}{3} \) We can use the identity: \[ p^3 + q^3 + r^3 = (p + q + r)(p^2 + q^2 + r^2 - pq - qr - rp) + 3pqr \] ### Step 1: Calculate \( p^2 + q^2 + r^2 \) Using the identity: \[ p^2 + q^2 + r^2 = (p + q + r)^2 - 2(pq + qr + rp) \] Substituting the known values: \[ p^2 + q^2 + r^2 = (11)^2 - 2(8) \] Calculating: \[ p^2 + q^2 + r^2 = 121 - 16 = 105 \] ### Step 2: Substitute into the identity for \( p^3 + q^3 + r^3 \) Now we can substitute \( p^2 + q^2 + r^2 \) back into the equation for \( p^3 + q^3 + r^3 \): \[ p^3 + q^3 + r^3 = (p + q + r)((p^2 + q^2 + r^2) - (pq + qr + rp)) + 3pqr \] Substituting the known values: \[ p^3 + q^3 + r^3 = 11 \left( 105 - 8 \right) + 3 \left( \frac{11}{3} \right) \] Calculating inside the parentheses: \[ p^3 + q^3 + r^3 = 11 \times 97 + 11 \] Calculating the first term: \[ 11 \times 97 = 1067 \] Adding the second term: \[ p^3 + q^3 + r^3 = 1067 + 11 = 1078 \] ### Final Result Thus, the value of \( p^3 + q^3 + r^3 \) is: \[ \boxed{1078} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If p:q=2:3 and q:r=4,:5, then find p:q:r.

ifp+q+r=1 and pq+qr+rp=-1 and pqr=-1 find value of p^(3)+q^(3)+r^(3)

If p : q :r :s = 3 : 4 : 7 : 8 and p+s=55 , then find q + r.

If p:q=3:4 and q:r=8:9 then p:r is

If P: Q =8.15 and Q:R =3:2 , then find P:Q:R

If p + q = 6 and pq = 8 , then p^(3) + q^(3) is equal to

If p = -2, q = - 1 and r = 3, find the value of (i) p^(2) + q^(2) - r^(2) (ii) 2p^(2) - q^(2) + 3r^(2) (iii) p - q - r (iv) p^(3) + q^(3) + r^(3) + 3 pqr (v) 3p^(2) q + 5pq^(2) + 2 pqr (vi) p^(4) + q^(4) - r^(4)

Suppose p, q, r are such that p+q=r and pqr = 30 , then what is the value of p^(3)+q^(3)-r^(3) ?