Home
Class 14
MATHS
If 2pi lt theta lt 4pi , the sum of all ...

If `2pi lt theta lt 4pi` , the sum of all the `theta`'s that satisfy `tan theta + 1/(tan theta) - 2=0` is ?

A

`13/3 pi`

B

`13/2pi`

C

`10/3pi`

D

`11/2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta + \frac{1}{\tan \theta} - 2 = 0 \) for \( 2\pi < \theta < 4\pi \), we can follow these steps: ### Step 1: Simplify the Equation Start with the equation: \[ \tan \theta + \frac{1}{\tan \theta} - 2 = 0 \] Let \( x = \tan \theta \). The equation becomes: \[ x + \frac{1}{x} - 2 = 0 \] Multiplying through by \( x \) (assuming \( x \neq 0 \)): \[ x^2 - 2x + 1 = 0 \] ### Step 2: Factor the Quadratic The equation can be factored as: \[ (x - 1)^2 = 0 \] This gives us: \[ x - 1 = 0 \implies x = 1 \] Thus, we have: \[ \tan \theta = 1 \] ### Step 3: Find the General Solutions for \( \theta \) The general solution for \( \tan \theta = 1 \) is: \[ \theta = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] ### Step 4: Determine Specific Solutions in the Given Range We need to find values of \( \theta \) in the range \( 2\pi < \theta < 4\pi \). 1. For \( n = 5 \): \[ \theta = \frac{\pi}{4} + 5\pi = \frac{\pi}{4} + \frac{20\pi}{4} = \frac{21\pi}{4} \] (This is valid since \( 2\pi < \frac{21\pi}{4} < 4\pi \)) 2. For \( n = 6 \): \[ \theta = \frac{\pi}{4} + 6\pi = \frac{\pi}{4} + \frac{24\pi}{4} = \frac{25\pi}{4} \] (This is also valid since \( 2\pi < \frac{25\pi}{4} < 4\pi \)) 3. For \( n = 7 \): \[ \theta = \frac{\pi}{4} + 7\pi = \frac{\pi}{4} + \frac{28\pi}{4} = \frac{29\pi}{4} \] (This exceeds \( 4\pi \), so we stop here) ### Step 5: Sum the Valid Solutions Now, we sum the valid solutions: \[ \frac{21\pi}{4} + \frac{25\pi}{4} = \frac{46\pi}{4} = \frac{23\pi}{2} \] ### Final Answer Thus, the sum of all the \( \theta \) that satisfy the equation is: \[ \frac{23\pi}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt theta lt pi//2 then .find the least value of tan theta + cot theta

If sin theta =12/13 ,(pi)/(2) lt theta lt pi find the value of sec theta + tan theta

Prove that sec theta + tan theta = tan (pi/4 + theta/2)

If : 0 lt theta lt pi/2 and sin 7theta + sin 4 theta + sin theta=0 , then : theta =

Solve tan theta tan 4theta=1 for - lt theta lt pi .